Построение системы рекомендаций для потоковых сервисов с использованием матричной факторизации

Построение системы рекомендаций для потоковых сервисов с использованием матричной факторизации

Магия рекомендаций: как работает матричная факторизация В мире стриминговых сервисов персонализированные рекомендации — это секретный ингредиент, который поддерживает интерес пользователей и заставляет их возвращаться снова и снова. Будь вы любителем бесконечных просмотров на Netflix, музыкальным энтузиастом Spotify или активным пользователем любой другой стриминговой платформы, вы, вероятно, сталкивались с рекомендациями «вам также может понравиться», которые кажутся почти волшебным образом подобранными под ваши вкусы. За этой магией стоит мощный метод, называемый матричной факторизацией. ...

9 октября 2024 10:07 · 3 минуты · 465 слов · Maxim Zhirnov